
Adaptive Methods for Transient Noise Analysis

Thorsten Sickenberger and Renate Winkler

Humboldt-Universität zu Berlin, Institut für Mathematik, 10099 Berlin
sickenberger/winkler@math.hu-berlin.de

Stochastic differential algebraic equations (SDAEs) arise as a mathemati-
cal model for electrical network equations that are influenced by additional
sources of Gaussian white noise. In this paper we discuss adaptive linear multi-
step methods for the numerical integration of SDAEs, in particular stochastic
analogues of the trapezoidal rule and the two-step backward differentiation
formula, together with a new step-size control strategy. Test results illustrate
the performance of the presented methods.

1 Transient noise analysis in circuit simulation

Transient analysis is often performed without taking noise effects into account.
But due to the parasitic effects, this is no longer possible. The increasing scale
of integration, high clock frequencies and low supply voltages cause smaller
signal-to-noise ratios. In several applications the noise influences the system
behaviour in an essentially nonlinear way such that linear noise analysis is no
longer satisfactory and transient noise analysis, i.e., the simulation of noisy
systems in the time domain, becomes necessary (see [DeWi03, Wi04]). Here
we deal with the thermal noise of resistors as well as the shot noise of semicon-
ductors that are modelled by additional sources of additive or multiplicative
Gaussian white noise currents that are shunt in parallel to the noise-free ele-
ments [DS98].

Thermal noise of resistors having a resistance R is caused by the ther-
mal motion of electrons and is described by Nyquist’s theorem. Hence, the
associated current is modelled by additive noise,

ith =

√

2kT

R
ξ(t), k = 1.3806 × 10−23, (1)

where T is the temperature, k is Boltzmann’s constant and ξ(t) is a stan-
dard Gaussian white noise process. Shot noise of pn-junctions, caused by the
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discrete nature of currents due to the elementary charge, is modelled by mul-
tiplicative noise. If the noise-free current through the pn-junction is described
by a characteristic i = g(u) in dependence on a voltage u, the associated
Gaussian white noise current is modelled by

ishot =
√

qe|g(u)|ξ(t), qe = 1.602 × 10−19, (2)

where ξ(t) again is a standard Gaussian white noise process and qe is the ele-
mentary charge. Combining Kirchhoff’s Current law with the element charac-
teristics and using the charge-oriented formulation yields a stochastic differ-
ential algebraic equation (SDAE) of the form (see [GF99] for the deterministic
case)

A
d

dt
q(x(t)) + f(x(t), t) +

m
∑

r=1

gr(x(t), t)ξr(t) = 0 , (3)

where A is a constant singular incidence matrix determined by the topology
of the dynamic circuit parts, the vector q(x) consists of the charges and the
fluxes, and x is the vector of unknowns consisting of the nodal potentials
and the branch currents through voltage-defining elements. The term f(x, t)
describes the impact of the static elements, gr(x, t) denotes the vector of
noise intensities for the r-th noise source, and ξ is an m-dimensional vector of
independent Gaussian white noise sources (see e.g. [DeWi03, Wi04]). Hence,
one has to deal with a large number of equations as well as of noise sources.
Compared to the other quantities the noise intensities gr(x, t) are small.

We understand (1) as a stochastic integral equation

Aq(X(s))
∣

∣

∣

t

t0
+

∫ t

t0

f(X(s), s)ds+

m
∑

r=1

∫ t

t0

gr(X(s), s)dWr(s) = 0, t ∈ [t0, T ] , (4)

where the second integral is an Itô-integral, and W denotes an m-dimensional
Wiener process (or Brownian motion) given on the probability space (Ω,F , P )
with a filtration (Ft)t≥t0 . The solution is a stochastic process depending on
the time t and on the random sample ω. For a fixed sample ω representing
a fixed realization of the driving Wiener noise, the function X(·, ω) is called
a realization or a path of the solution. Due to the influence of the Gaussian
white noise, typical paths are nowhere differentiable.

Especially for oscillating solutions in circuit simulation one is interested
in the phase noise. We aim at the simulation of solution paths that reveal
the phase noise. From the solution paths statistical data of the phase as well
as of moments of the solution can be computed in a post-processing step.
We therefore use the concept of strong solutions and strong (mean-square)
convergence of approximations.

Using techniques from the theory of DAEs as well as of the theory of
stochastic differential equations (SDEs) one derives existence and uniqueness
for the solutions as well as convergence results for certain drift-implicit meth-
ods for systems with index 1 DAE [Wi03].
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2 Adaptive numerical methods

An efficient integrator must be able to change the step-size. We present adap-
tations of known schemes for SDEs that are implicit in the deterministic part
(drift) and explicit in the stochastic part (diffusion) of the SDAE. Designing
the methods such that the iterates have to fulfill the constraints of the SDAE
at the current time-point is the key idea to adapt known methods for the
SDEs to (4).

We consider stochastic analogues of the two-step backward differentiation
formula (BDF2) and the trapezoidal rule, where only the increments of the
driving Wiener process are used to discretize the diffusion part. Analogously
to the Euler-Maruyama scheme we call such methods multi-step Maruyama
methods. The variable step-size BDF2 Maruyama method for the SDAE (4)
has the form (see [Si05] and e.g. [BuWi05] in the case of constant step-sizes)

A
q(X`) −

(κ`+1)2

2κ`+1 q(X`−1) +
κ2

`

2κ`+1q(X`−2)

h`
+

κ` + 1

2κ` + 1
f(X`, t`)

+

m
∑

r=1

gr(X −̀1, t −̀1)
∆W `

r

h`
−

κ2
`

2κ` + 1

m
∑

r=1

gr(X −̀2, t −̀2)
∆W `−1

r

h`
= 0, (5)

` = 2, . . . , N . Here, X` denotes the approximation to X(t`), h` = t`−t`−1, and
∆W `

r = Wr(t`) − Wr(t`−1) ∼ N(0, h`) on the grid 0 = t0 < t1 < . . . < tN =
T . The coefficients of the two-step scheme (5) depend on the step-size ratio
κ` = h`/h −̀1 and satisfy the conditions for consistency of order one and two
in the deterministic case and of order 1/2 in the stochastic case (see [Si05]).

A correct formulation of the stochastic trapezoidal rule for SDAEs re-
quires more structural information (see [SiWi06]). It should implicitly realize
the stochastic trapezoidal rule for the so called inherent regular SDE of (4)
that governs the dynamical components. One possibility is to discretize the
constraints differently, which requires the explicit knowledge of the constraints
or, equivalently, a projector R along imA. The discrete equations

A
q(X`) − q(X`−1)

h`
+

1

2
(I − R)

(

f(X`, t`) + f(X`−1, t`−1)
)

+Rf(X`, t`) +

m
∑

r=1

gr(X`−1, t`−1)
∆W `

r

h`
= 0, (6)

` = 1, . . . , N , imply the correct constraints and realize the trapezoidal rule for
the inherent regular SDE.

Both the BDF2 (5) and the trapezoidal rule (6) have only an asymptotic
order of strong convergence of 1/2, i.e.,

‖X(t`) − X`‖L2(Ω) := max
`=1,...,N

(E|X(t`) − X`|
2)1/2 ≤ c · h1/2, (7)
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where h := max`=1,...,N h` is the maximal step-size of the grid. (For additive
noise the order may be 1.) This holds true for all numerical schemes that
include only information on the increments of the Wiener process.

However, the noise densities given in Sec. 1 contain small parameters and
the error behaviour is much better. In fact, the errors are dominated by the
deterministic terms as long as the step-size is large enough [BuWi05]. In more
detail, the error of the given methods behaves like O(h2 + εh + ε2h1/2), when
ε is used to measure the smallness of the noise (gr(x, t) = εĝr(x, t), r =
1, . . . ,m, ε¿1). Thus we can expect order 2 behaviour if h À ε.

The smallness of the noise also allows special estimates of the local error
terms, which can be used to control the step-size. In [RoWi05] the authors
presented a step-size control for the drift-implicit Euler scheme in the case
of small noise that leads to adaptive step-size sequences that are uniform for
all paths, see also [DeWi03, Wi04]. The estimates of the dominating local
error term are based on values of the drift term and do not cost additional
evaluations of the coefficients of the SDE or their derivatives. In [SWW06,
SWW07] we extend this strategy to stochastic linear multi-step methods with
deterministic order 2 and present an estimate of the mean-square local errors.
Again it is based on divided differences of values of the drift term and leads
to step-size sequences that are identical for all computed paths.

3 Numerical results

Here, we illustrate the potential of the step-size control strategy by simulation
results for the stochastic BDF2 applied to three test problems. For the first
and the second example we use an implementation of the adaptive methods
discussed in the previous section in fortran code. To be able to handle real-
life problems, a slightly modified version of the schemes for MNA together
with the new step-size control has been implemented in Qimonda’s in-house
simulator TITAN. The third example shows the performance of this industrial
implementation.

A nonlinear test-SDE

First, we consider a nonlinear scalar SDE with known explicit solution. The
drift and diffusion coefficients are tunable by real parameters α and β, which
we have chosen as α = −10 and β = 0.01:

X(t) =

∫ t

0

−(α+β2X(s))(1−X(s)2)ds+

∫ t

0

β(1−X(s)2)dW (s), t ∈ [0, T ] . (8)

The solution is given by

X(t) =
exp(−2αt + 2βW (t)) − 1

exp(−2αt + 2βW (t)) + 1
. (9)
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Fig. 1. Tolerance and accuracy versus steps for a test-SDE.

In Figure 1 we present a work-precision diagram. We plotted the tolerance (4)
and the mean-square norm of the errors for adaptively chosen (+) and constant
(×) step-sizes for 100 computed paths vs. the number of steps in logarithmic
scale. Lines with slopes −2 and −0.5 are provided to enable comparisons with
convergence of order 2 or 1/2. We observe order 2 behaviour up to accuracies
of 10−4. The results show that the proposed step-size control works very well
for step-sizes above this threshold and provides considerably more accurate
results than the computation with the same number of constant steps.

A MOSFET inverter circuit

Secondly, we consider a model of an inverter circuit with a MOSFET-
transistor under the influence of thermal noise. The equivalent circuit diagram
is given in Figure 2. The MOSFET is modelled as a current source from source
to drain that is controlled by the nodal potentials at gate, source and drain.

Uop

Uin

R

C

12

3

Fig. 2. Thermal noise sources in a MOSFET inverter circuit

The thermal noise of the resistor and of the MOSFET is modelled by
additional white noise current sources that are shunt in parallel to the original,
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noise-free elements. To make the effect of the noise more visible we scaled the
noise intensities by a factor of 1000. For the simulation we used the BDF2

with adaptively chosen step-sizes. In Figure 3 we present simulation results,
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Fig. 3. Simulation results for the noisy inverter circuit:
1 path 127(+29 rejected) steps; 100 paths 134(+11 rejected) steps

where we plotted the input voltage Uin and values of the output voltage e1

versus time. We compare the results for the computation of a single path
(left picture) with those for the computation of 100 simultaneously computed
solution paths (right picture), where the dark lines additionally show the
values of two different solution paths, the dotted line gives the mean of 100
paths and the gray lines the 3σ-confidence interval for the output voltage e1.
Moreover, the applied step-sizes, suitably scaled, are shown by means of single
crosses. Using the information of an ensemble of simultaneously computed
solution paths smoothes the step-size sequence and reduces the number of
rejected steps considerably, compared to the simulation of a single path. Also
the computational cost mainly determined by the number of integration steps
is reduced.

A voltage controlled oscillator

Finally, we present simulation results for a voltage controlled oscillator that
has been used as a test application. It is a simplified version of a fully inte-
grated 1.3 GHz VCO for GSM in 0.25 µm standard CMOS (see [Ti00]). For
simulation, the oscillator is embedded in a test environment, using a virtual
output buffer load and tuning voltage as well as core current modelled as in-
dependent DC sources. The VCO is tunable from about 1.2 GHz up to 1.4
GHz. The unknowns of the VCO in the MNA system are the charges of the
six capacities, the fluxes of the four inductors, the 15 nodal potentials and
the currents through the voltage sources. This circuit contains 5 resistors and
6 MOSFETs, which induce 53 sources of thermal or shot noise. To make the
differences between the solutions of the noisy and the noise-free model more
visible, the noise intensities had been scaled by a factor of 500.

Numerical results obtained with a combination of the BDF2 and the trape-
zoidal rule are shown in Fig. 4, where we plotted the difference of the nodal
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potential V (7)− V (8) of node 7 and 8 versus time. The solution of the noise-
free system is given by a dashed line. Four sample paths (dark solid lines)
are shown. They cannot be considered as small perturbations of the deter-
ministic solution, phase noise is highly visible. To analyze the phase noise we
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Fig. 4. Noisy transient output signal of a VCO.

repeated the simulation ten times with different initialization of the pseudo-
random numbers. Then we computed the length of the first 50 periods for each
solution path. On Fig. 5 the mean µ of the frequencies (horizontal lines), the
smallest and the largest frequencies (boundaries of the vertical thin lines) and
the boundaries of the confidence interval µ±σ (the plump lines) are presented,
where σ was computed as the empirical estimate of the standard deviation.
The mean appears increased and differs by about +0.25% from the noiseless,
deterministic solution. Further on, the frequencies vacillate from 1.18 GHz
(-0.95%) up to 1.21 GHz (+1.55%). So the transient noise analysis shows that
the voltage controlled oscillator runs in a noisy environment with increased
frequencies and smaller phases, respectively.
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