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Time-continuous modelling

Directed graph used as network model:
The network is modelled as a directed graph where each arc represents a proces-
sor and each vertex is a distribution point. Queues in front of processors acting as
buffing zones. The density of goods in the processors and the queue load are the
quantities of interest.
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Densities of the processors and loads of queues:
Density ρe(x,t) of processor e transported with velocity f e(ρe) modelled by

(PDE) ∂tρe(x,t)+∂x f e(ρe(x,t)) = 0, x∈ [ae,be], t ∈ [t0,T ] .

Relation between flux and density given by flux function
(ve is constant transport velocity, µe maximal processing rate)

f e(ρe) = min(ve·ρe,µe) .

Load qe(t) of the buffing zone (queue) for processor e described by

(ODE) ∂tq
e(t) = ge

in(t)−ge
out(t) , t ∈ [t0,T].

PDE-ODE coupling:
⊲ Ingoing flux function (As(e),e distribution rate, δ−

s(e)
set of ingoing arcs, G

s(e)
in external inflow function)

ge
in(t) =







As(e),e(t)∑ē∈δ−
s(e)

f ē(ρē(bē,t)) , if s(e) 6∈ Vin,

Gs(e)
in (t) , if s(e)∈ Vin.

⊲ Outgoing flux function (µe maximal processing rate, qe queue load

ge
out(t) =

{

min{ge
in(t) , µe} , if qe(t) = 0,

µe , if qe(t) > 0.

⊲ PDE boundary condition

(PDE b.c.) ρe(ae,t) = ge
out(q

e(t))/ve .

Breakdown of processors

Single processor:
Modelled by a stochastic two-state process

re : R
+
0 ×Ω →{0,1} : t×ω 7→ re(t,ω) ,

where the time length ∆τe up to the next switching at t∗ + ∆τe is exponential dis-
tributed with rate parameter (Here, τe

on mean time between failures, and τe
off: mean repair time.)

λ(re(t∗)) =

{

1/τe
on , if re(t∗) = 1,

1/τe
off , if re(t∗) = 0.

Including the random breakdowns in the network model:
Replacing the maximal processoing rate µe by the time-dependent function

µe(t) := µe · re(t)

⊲ re(t) = 0 (in-operating) ⇒ µe(t) = 0 and f e(ρe) = 0 (no transport)
⊲ re(t) = 1 (operating) ⇒ µe(t) = µe and f e(ρe) = min(ve·ρe,µe) (det. transport)

re, ρe, and qe are stochastic processes, but re is a random constant between switch-
ing times.

⊲ The solution (ρ1, . . . ,ρM ,q1, . . . ,qM) of the network is a piecewise deterministic
stochastic process.

Numerics for the coupled system

Sample switching times:
Consider the minimum of all switiching times ∆τ = min{∆τ1, . . . ,∆τM}, that is the
length of the time interval [t∗i ,t∗i+1], where all processes re are random constants
and the network behaves deterministically.

⊲ The length of the time interval ∆τ until the next switiching occurs is
exponentially distributed with rate parameter λsum(t∗i ) = ∑eλe(re(t∗i )).

⊲ The index ē of the next switching processor is
proportionally distributed to λe(re(t∗i ))/λsum(t∗i ).

Use deterministic numerics between two switching times t∗i and t∗i+1:
(Here, t∗i = tc < · · ·< t j < t j+1 < · · ·< tC = t∗i+1, and all t j belong to a global equidistant grid.)

⊲ Upwind scheme for the PDE (∆ex: constant step-size in space)

ρ̄e(xk+1,t j+1) = ρ̄e(xk+1,t j )−
(ve · r̄e(t j))∆t j

∆ex
(ρ̄e(xk+1,t j )− ρ̄e(xk,t j ))

⊲ Euler step for the ODE (∆t j : variable step-size in time)

q̄e(t j+1) = q̄e(t j)+∆t j · (g
e
in −ge

out)

Repeat this procedure iteratively until the time horizon T is reached.

Simulation experiments

A chain of 5 processors
Parameters: 5 processors (e= 1, . . . ,5), processing rates µe = 2, velocities ve = 1,
lengths le = 0.2, constant network inflow Gs(1)

in (t) = 1.8, time horizon T = 4, and
different mean time between failures (MTBF) and mean repair times (MRT).

processor e 1 2 3 4 5

MTBF τe
on 0.95 – 0.85 1.90 0.95

MRT τe
off 0.05 – 0.15 0.10 0.05

Simulation results:
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Deterministic density, stochastic density and queue-loads using 1000 scenarios.

A diamond network
Parameters: 7 processors and 2 controls (α1, α2)
velocities ve= 1, lengths le= 1, time horizon T= 70.

processor e µe τe
on τe

off

1 40 0.95 0.05
2 30 0.50 0.50
3 20 0.95 0.05
4 20 0.50 0.50
5 5 0.95 0.05
6 10 0.95 0.05
7 10 0.95 0.05

Simulation results:

Network graph:
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Inflow profil:
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Total production time of 250 units (det. and stochastic simulation) using different
sets of distribution rates α1 and α2.
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