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Time-continuous modelling

Directed graph used as network model:

The network is modelled as a directed graph where each arc represents a proces-
sor and each vertex is a distribution point. Queues in front of processors acting as
buffing zones. The density of goods in the processors and the queue load are the
quantities of interest.
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Densities of the processors and loads of queues:
Density p®(x,t) of processor e transported with velocity f(p®) modelled by

(PDE) 0rp8(x,t) +0xfe(pS(x,1)) =0, x€[a%b®, teto,T].

Relation between flux and density given by flux function
(V& is constant transport velocity, i maximal processing rate)

f8(p°) = min(v®-p®,1%).
Load ¢f(t) of the buffing zone (queue) for processor e described by
(ODE) 80°(t) =g () —doue(t), t€ o, T].
PDE-ODE coupling:

> Ingoing flux function (aS(®)-€ distribution rate, 5

set of ingoing arcs, G%e) external inflow function)

) Aty Y To(p%(BR L)), ifs(e) & U,
o) = “© ®e) .
), if s(e) € V.

> Outgoing flux function (1€ maximal processing rate, g queue load

mln{an( ) ue}7 if q (t) =
Gou(t) = {“e_’ if Ge(t) > 0

> PDE boundary condition
(PDE b.c.) po(a%,1) = gou (A (1)) /V° .

Numerics for the coupled system

Sample switching times:

Consider the minimum of all switiching times At = min{At?,... A™}, that is the
length of the time interval [t",t" ;], where all processes r® are random constants
and the network behaves deterministically.

> The length of the time interval At until the next switiching occurs is
exponentially distributed with rate parameter ASU™(t") = $ A°(ré(t")).

> The index € of the next switching processor is
proportionally distributed to A®(re(t")) /ASU™t).

Use deterministic numerics between two switching times t* and t;*
(Here, l* =lc<-- <t <t]+1 < <to= TI+1 and all tj belong to a global equidistant grld)

i1t

> Upwind scheme for the PDE (A®x: constant step-size in space)
(V8- T5(t;)) At
A®x

> Euler step for the ODE (At;: variable step-size in time)

PT(XkHytHl) = PT(XkJrlvtj) - (&(Xk«f»l,t ) — 0% (X, t i)

G (tj+1) = G°(tj) + At - (9F, — g5u)

Repeat this procedure iteratively until the time horizon T is reached.

Breakdown of processors

Single processor:
Modelled by a stochastic two-state process
r¢:R{ x Q — {0,1} 1t x w— ré(t,w),

where the time length At® up to the next switching at t* + At® is exponential dis-
tributed with rate parameter (Here, 1§, mean time between failures, and Tgﬁi mean repair time.)

ey _ ) L/Tons ifré(t) =1,
() = {1/rgﬁ, if re(t") = 0.

Including the random breakdowns in the network model:
Replacing the maximal processoing rate € by the time-dependent function

HE() = - r8(t)
> ré(t) = 0 (in-operating) = p(t) =0 and fé(p®) = 0 (no transport)
>ré(t) =1 (operating) = p(t) = p® and f&(p®) = min(ve-p®,p°) (det. transport)

re, p€, and gf are stochastic processes, but r€is a random constant between switch-
ing times.

> The solution (pt,...,pM,qt,...
stochastic process.

,q") of the network is a piecewise deterministic

Simulation experiments

A chain of 5 processors

Parameters: 5 processors (e=1,...,5), processing rates p® = 2, velocities V¢ = 1,
lengths 1€ = 0.2, constant network |nf|0w GS“)( t) = 1.8, time horizon T =4, and
different mean time between failures (MTBF) and mean repair times (MRT).
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Simulation results:

0o

Deterministic densny, stochastic density and queue-loads using 1000 scenarios.

A diamond network

Parameters: 7 processors and 2 controls (a1, 02) Network graph
velocities v¢=1, lengths 1°=1, time horizon T=70.
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Simulation resulte*

Total production time of 250 units (det. and stochastic simulation) using different
sets of distribution rates a; and a5.
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