# Asymptotic MS-Stability Analysis for Linear Systems of SDEs



#### Evelyn Buckwar and Thorsten Sickenberger

Maxwell Institute and Heriot-Watt University, Dept. of Mathematics, Edinburgh, EH14 4AS, UK

E-mail: e.buckwar@hw.ac.uk/t.sickenberger@hw.ac.uk

### MS-stability of linear systems

Consider the linear d-dimensional system of SDEs with m multiplicative noise terms

$$dX(t) = FX(t)dt + \sum_{r=1}^{m} G_rX(t)dW_r(t), \quad t \ge t_0 \ge 0, \quad X(t_0) = X_0.$$
 (1)

Here,  $F \in \mathbb{R}^{d \times d}$ ,  $G_1, \ldots, G_m \in \mathbb{R}^{d \times d}$ ,  $W = (W_1, \ldots, W_m)^T$  is an m-dim. Wiener process. Moreover, Eq. (1) has the zero solution  $X(t;t_0,0) \equiv 0$  as its equilibrium solution.

#### Definition of asymptotic mean-square stability:

The zero solution of the SDE system (1) is said to be

ightarrow mean-square stable, if for each  $\epsilon>0$ , there exists a  $\delta\geq 0$  s.t. when  $\|X_0\|_{L_2}^2<\delta$ ,

$$||X(t;t_0,X_0)||_{L_2}^2 < \varepsilon, \quad t \ge t_0;$$

 $\triangleright$  asymptotically mean-square stable, if it is MS-stable and, when  $\|X_0\|_{L_2}^2 < \delta$ ,

$$||X(t;t_0,X_0)||_{L_2}^2 \to 0$$
 for  $t\to\infty$ .

The second moment of the solution of (1), that is the expectation of the matrix-valued process  $P(t) = X(t)X(t)^T$ , is given by the matrix ODE

$$\mathrm{dE}(P(t)) = \left(F \mathsf{E}(P(t)) + \mathsf{E}(P(t))F^T + \sum_{r=1}^m G_r \mathsf{E}(P(t)) \, G_r^T \right) \mathrm{d}t \,, \ \ t \ge t_0 \ge 0 \,, \ \ P(t_0) = X_0 X_0^T \,.$$

Applying the vectorisation yields a vector ODE for the  $d^2$ -dimensional vector  $\mathsf{E}(Y(t)) = \mathsf{E}(\mathsf{vec}(P(t)))$   $\mathsf{dE}(Y(t)) = S \cdot \mathsf{E}(Y(t)) \, \mathsf{d}t \, ,$ 

where S is the mean-square stability matrix ( $\otimes$  denotes the Kronecker product)

$$S = (\operatorname{Id} \otimes F) + (F \otimes \operatorname{Id}) + \sum_{r=1}^{m} (G_r \otimes G_r).$$

#### Stability condition:

The zero solution of the linear SDE system (1) is asymptotically mean-square stable if and only if  $\alpha(S) < 0$ .

Here,  $\alpha(A)$  is the spectral abscissa defined by  $\alpha(S) = \max_i \Re(\lambda_i)$ , where  $\lambda_i$  are the eigenvalues of the matrix S.

### MS-stability of one-step approximations

Consider θ-Maruyama and θ-Milstein approximations given by

$$X_{i+1}=\mathfrak{A}_iX_i, \qquad i=0,1,\ldots.$$

$$\mathfrak{A}_{i}^{\mathsf{Mar}} = A + \sum_{r=1}^{m} B_{r} \xi_{r,i} \quad \text{ and } \quad \mathfrak{A}_{i}^{\mathsf{Mil}} = \bar{A} + \sum_{r=1}^{m} B_{r} \xi_{r,i} + \sum_{r_{1},r_{2}=1}^{m} C_{r_{1},r_{2}} \xi_{r_{1},i} \xi_{r_{2},i},$$

**respectively.** Here,  $\xi_{r_i} \sim \mathcal{N}(0,1)$ ,  $A = (\mathrm{Id} - h\theta F)^{-1}(\mathrm{Id} + h(1-\theta)F)$ ,  $B_r = (\mathrm{Id} - h\theta F)^{-1}\sqrt{h}G_r$ ,  $\bar{A} = A - \sum_{r=1}^m C_{r,r}$ ,  $C_{r_1,r_2} = (\mathrm{Id} - h\theta F)^{-1}(0.5hG_{r_1}G_{r_2})$ , h constant step-size,  $\theta$  controls the implicity of the drift discretisation and commutative noise.

The second moment of the approximation of (2), that is the expectation of the discrete matrix-valued process  $X_iX_i^T$ , can be obtained by multiplying (2) with  $X_{i+1}^T$  and  $(\mathfrak{A}_iX_i)^T$ , respectively. Applying the vectorisation and taking expectation yields

$$\mathsf{E}(Y_{i+1}) = \mathcal{S} \cdot \mathsf{E}(Y_i)$$
,

where  $Y_i = \text{vec}(X_i X_i^T)$ , and  $\mathcal{S} = \mathsf{E}(\mathfrak{A}_i \otimes \mathfrak{A}_i)$  is the mean-square stability matrix of the numerical method

$$\begin{split} \mathcal{S}^{\mathsf{Mar}} &= (A \otimes A) + \sum_{r=1}^{m} (B_r \otimes B_r) \,, \\ \mathcal{S}^{\mathsf{Mil}} &= (A \otimes A) + \sum_{r=1}^{m} (B_r \otimes B_r) + 2 \sum_{r=1}^{m} (C_{r,r} \otimes C_{r,r}) + \left( \sum_{\substack{r_1, r_2 = 1 \\ r_1 \neq r_2}}^{m} C_{r_1, r_2} \otimes \sum_{\substack{r_1, r_2 = 1 \\ r_1 \neq r_2}}^{m} C_{r_1, r_2} \right). \end{split}$$

#### Stability condition:

The zero solution of the linear system of stochastic difference equations (2) is asymptotically stable in mean-square if and only if

Here,  $\rho(\mathcal{S})$  is the spectral radius defined by  $\rho(\mathcal{S}) = \max_i |\lambda_i|$ , where  $\lambda_i$  are the eigenvalues of the matrix  $\mathcal{S}$ .

## Application to a test-system

Consider the two-dim. test-system with two commutative noise terms:

$$\mathrm{d}X(t) = \left( \begin{array}{cc} \lambda & 0 \\ 0 & \lambda \end{array} \right) X(t) \mathrm{d}t + \left( \begin{array}{cc} \sigma & 0 \\ 0 & \sigma \end{array} \right) X(t) \mathrm{d}W_1(t) + \left( \begin{array}{cc} 0 & -\varepsilon \\ \varepsilon & 0 \end{array} \right) X(t) \mathrm{d}W_2(t) \,.$$

Stability conditions: The zero solution of

b this test system is asymptotically mean-square stable if and only if

$$\lambda + \frac{\sigma^2}{2} + \frac{\epsilon^2}{2} < 0;$$

 $\triangleright$  the stochastic difference equation generated by the  $\theta\textsc{-Maruyama}$  method is asymptotically mean-square stable if and only if

$$\frac{(1+(1-\theta)\hbar\lambda)^2+\hbar(\sigma^2+\epsilon^2)}{(1-\lambda\hbar\theta)^2}<1\,;$$

 $\,\,{}^{\triangleright}\,$  the stochastic difference equation generated by the  $\theta\textsc{-Milstein}$  method is asymptotically mean-square stable if and only if

$$\frac{(1+(1-\theta)h\lambda)^2+h(\sigma^2+\epsilon^2)+\frac{1}{2}h^2(\sigma^2+\epsilon^2)^2}{(1-\lambda h\theta)^2}<1\,.$$



Boundaries of the mean-square stability regions for the test system (black area) and the  $\theta$ -Maruyama (light grey area) and the  $\theta$ -Milstein method (dark grey area) for  $\theta=0,0.5,1.$  The first plot provides a zoom into the second plot.

### **Numerical experiments**

(2)

Consider the two-dim. test-system with  $\lambda=-2,\,\sigma=0.5,\,\epsilon=\sqrt{3}.$  The zero-solution of that system is stable with spectral abscissa -0.750.

|           | θ-Maruyama approximation |                |              | θ-Milstein approximation |                |              |
|-----------|--------------------------|----------------|--------------|--------------------------|----------------|--------------|
| step-size | $\theta = 0$             | $\theta = 0.5$ | $\theta = 1$ | $\theta = 0$             | $\theta = 0.5$ | $\theta = 1$ |
| h=1.00    | 4.250 unst.              | 0.813 stable   | 0.472 stable | 9.531 unst.              | 2.133 unst.    | 1.059 unst.  |
| h=0.50    | 1.625 unst.              | 0.833 stable   | 0.656 stable | 2.945 unst.              | 1.420 unst.    | 0.986 stable |
| h=0.20    | 1.010 unst.              | 0.896 stable   | 0.842 stable | 1.221 unst.              | 1.043 unst.    | 0.950 stable |
| h=0.10    | 0.965 stable             | 0.938 stable   | 0.920 stable | 1.018 unst.              | 0.982 stable   | 0.957 stable |
| h=0.05    | 0.973 stable             | 0.966 stable   | 0.961 stable | 0.986 stable             | 0.978 stable   | 0.972 stable |
| h=0.02    | 0.987 stable             | 0.986 stable   | 0.985 stable | 0.989 stable             | 0.988 stable   | 0.987 stable |
| h=0.01    | 0.993 stable             | 0.993 stable   | 0.992 stable | 0.993 stable             | 0.993 stable   | 0.993 stable |

Values of the spectral radius of the corresponding stability matrix  $\mathcal{S}^{\text{Mar}}$  and  $\mathcal{S}^{\text{Mil}}$  for the test-equation computed numerically.

Estimated mean-square norm of  $\theta$ -Maruyama and  $\theta$ -Milstein approximations.

Results for the first component  $X_1$  using one million sample paths,  $\theta=0$  and different values of the step-sizes.





#### References

- E. Buckwar and T. Sickenberger: A comparative linear mean-square stability analysis of Maruyama- and Milstein-type methods. Heriot-Watt Mathematics Report HWM09-13, 19 pages (2009). Submitted.
- [2] E. Buckwar and T. Sickenberger: A structural analysis of asymptotic mean-square stability for multi-dimensional linear stochastic differential systems. Heriot-Watt Mathematics Report HWM10-21, 25 pages (2010). Submitted.
- [3] D.J. Higham: A-stability and stochastic mean-square stability.
  BIT Numerical Mathematics 40(2), pp. 404–409 (2000).
- Y. Saito and T. Mitsui: Mean-square stability of numerical schemes for stochastic differential systems. Vietnam J. of Mathematics 30(Special Issue), pp. 551–560 (2002).

Supported by



The Leverhulme Trust