Asymptotic MS-Stability Analysis for Linear Systems of SDEs
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MS-stability of linear systems

Consider the linear d-dimensional system of SDEs with mmultiplicative noise terms
m
dX(t) = FX(t)dt+ 2 G X(H)dWi(t), t>1t >0, X(to)=Xo. 1)
Here, F e R%%9, Gy,...,Gp € R9Y, W = (W4,...,Wy)T is an m-dim. Wiener process.
Moreover, Eq. (1) has the zero solution X(t;tp,0) = 0 as its equilibrium solution.

Definition of asymptotic mean-square stability:
The zero solution of the SDE system (1) is said to be
> mean-square stable, if for each £ > 0, there exists a > 0s.t. when |\X0|\Ez<6

IX(tto, Xo) [, <&, t=>to;
> asymptotically mean-square stable, if it is MS-stable and, when |\X0|\f2<5,
[X(t;to, Xo)|[f, = O for t— oo

The second moment of the solution of (1), that is the expectation of the matrix-
valued process P(t) = X()X(1)T, is given by the matrix ODE

t)FT + ZG,

Applying the vectorisation yields a vector ODE for the d?-dimensional vector
E(Y(1)) = E(vec(P(1)))

dE(P(t)) = (FE(P(t)) + NG )dt, t>1tg>0, Plto) =XoXg -

dE(Y (1)) = S E(Y (1)) ct,
where Sis the mean-square stability matrix ( denotes the Kronecker product)
m
=(d®F)+(F®Id)+ E(G,QQG,),

r=1

Stability condition:
The zero solution of the linear SDE system (1) is asymptotically mean-square sta-
ble if and only if

a(s§) <0.

Here, a(A) is the spectral abscissa defined by a(S) = max 93 (Aj), where A; are the eigenvalues of the matrix S

MS-stability of one-step approximations

Consider 6-Maruyama and 8-Milstein approximations given by

X1 = 24X, i=01,.... @
where

m
AT AL S B and AR5 BEE S Oy

=1 r1r2=1
respectively. Here, & ~A((0,1), A= (Id—hoF)~ 1<ld+h<179)F)v Br = (Id—h6F) "L vAGr, A= A-5T0, Cryr,

Cryrg = (ld— heF)’l(O,ShGrlGrz), h constant step-size, 8 controls the implicity of the drift discretisation and
commutative noise.

The second moment of the approximation of (2), that is the expectation of the
discrete matrix-valued process X X", can be obtained by multiplying (2) with X,
and (24iX)T, respectively. Applying the vectorisation and taking expectation yields

E( |+1) S- E( )

where Y, = vec(XXT), and § = E(2l; ®2l;) is the mean-square stability matrix of the
numerical method

m
S = (A®A)+ Y (B @B),
=1
. rm < <
sMil (A®A)+2(Br®Br 2 (Crr ®Cryp)+ 2 Ciyrp® z Ciyra -
“ =1 ry.rp=1 riro=1
17 r1#1

Stability condition:
The zero solution of the linear system of stochastic difference equations (2) is
asymptotically stable in mean-square if and only if

p(s) < 1.

Here, p(S) is the spectral radius defined by p(S5) = max |Aj|, where A; are the eigenvalues of the matrix §.

Application to a test-system

Consider the two-dim. test-system with two commutative noise terms:
A0 c O 0 —¢
dXx(t) = ( 0 A )X(t)dt+( 0 o )X(t)d\/\/l(t)+< e 0 )X(t)d\/\lz(t),

Stability conditions: The zero solution of
> this test system is asymptotically mean-square stable if and only if
a? €

A —+—=<0;
+2+2<,

> the stochastic difference equation generated by the 6-Maruyama method is
asymptotically mean-square stable if and only if
(1+(1-8)hA)?+h(a? +€?) <1
(1—Ah6)2 '

> the stochastic difference equation generated by the 6-Milstein method is
asymptotically mean-square stable if and only if
(14 (1—6)hA)2+h(0? +£2) + Fh?(0? +€2)2
(1—Ah6)2

<1

Stability regions: Set x:= h>\ y:=ho?, and z:= he?.
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Boundaries of the mean-square stability regions for the test system (black area)

and the 6-Maruyama (light grey area) and the 6-Milstein method (dark grey area)
for 8 =0,0.5,1. The first plot provides a zoom into the second plot.

Numerical experiments

Consider the two-dim. test-system with A = —2, 0 = 0.5, £ = /3. The zero-solution
of that system is stable with spectral abscissa —0.750.

6-Maruyama approximation | | 6-Milstein approximation

| step-size || 6=0 | 6=05 | 6=1

=0 | =05 | e8=1
h=1.00 4.250 unst. 0.813 stable 0.472 stable 9.531 unst. 2.133 unst. 1.059 unst.
h=0.50 1.625 unst. 0.833 stable 0.656 stable 2.945 unst. 1.420 unst. 0.986 stable
h=0.20 1.010 unst. 0.896 stable 0.842 stable 1.221 unst. 1.043 unst. 0.950 stable
h=0.10 0.965 stable 0.938 stable 0.920 stable 1.018 unst. 0.982 stable 0.957 stable

h=0.05 0.973 stable 0.966 stable 0.961 stable
h=0.02 0.987 stable 0.986 stable 0.985 stable 0.989 stable 0.988 stable 0.987 stable
h=0.01 0.993 stable 0.993 stable 0.992 stable 0.993 stable 0.993 stable 0.993 stable

0.986 stable 0.978 stable 0.972 stable

Values of the spectral radius of the corresponding stability matrix sM2" and sM!
for the test-equation computed numerically.

Estimated mean-square norm of 8-Maruyama and 6- Mllsteln al prOX|mat|ons

MS-nom of X, using 8-Maruyama (1000000 sample paths) sing 6-Mitein (1000000 sar

Results for the first | / . N E
component X; using i /0 e )
one million sample /.- e b
paths, 8 = 0 and dif- .=
ferent values of the o o
step-sizes. - RSN o
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