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MS-stability of linear systems

Consider the linear d-dimensional system of SDEs with m multiplicative noise terms

dX(t) = FX(t)dt +
m

∑
r=1

GrX(t)dWr(t), t ≥ t0 ≥ 0, X(t0) = X0 . (1)

Here, F ∈ R
d×d , G1, . . . ,Gm ∈R

d×d , W = (W1, . . . ,Wm)T is an m-dim. Wiener process.
Moreover, Eq. (1) has the zero solution X(t; t0,0) ≡ 0 as its equilibrium solution.

Definition of asymptotic mean-square stability:
The zero solution of the SDE system (1) is said to be

⊲ mean-square stable, if for each ε > 0, there exists a δ ≥ 0 s.t. when ‖X0‖2
L2

<δ,

‖X(t; t0,X0)‖2
L2

< ε , t ≥ t0 ;

⊲ asymptotically mean-square stable, if it is MS-stable and, when ‖X0‖2
L2

<δ,

‖X(t; t0,X0)‖2
L2

→ 0 for t → ∞ .

The second moment of the solution of (1), that is the expectation of the matrix-
valued process P(t) = X(t)X(t)T , is given by the matrix ODE

dE(P(t)) =
(

FE(P(t))+E(P(t))FT +
m

∑
r=1

GrE(P(t))GT
r

)

dt , t ≥ t0 ≥ 0, P(t0) = X0X T
0 .

Applying the vectorisation yields a vector ODE for the d2-dimensional vector
E(Y(t)) = E(vec(P(t)))

dE(Y (t)) = S ·E(Y(t))dt ,

where S is the mean-square stability matrix (⊗ denotes the Kronecker product)

S = (Id⊗F)+(F ⊗ Id)+
m

∑
r=1

(Gr ⊗Gr) .

Stability condition:
The zero solution of the linear SDE system (1) is asymptotically mean-square sta-
ble if and only if

α(S) < 0.

Here, α(A) is the spectral abscissa defined by α(S) = maxi R(λi), where λi are the eigenvalues of the matrix S.

MS-stability of one-step approximations

Consider θ-Maruyama and θ-Milstein approximations given by

Xi+1 = AiXi, i = 0,1, . . . . (2)
where

A
Mar
i = A +

m

∑
r=1

Brξr,i and A
Mil
i = Ā +

m

∑
r=1

Br ξr,i +
m

∑
r1,r2=1

Cr1,r2 ξr1,i ξr2,i ,

respectively. Here, ξr,i ∼N (0,1), A = (Id−hθF)−1(Id+h(1−θ)F), Br = (Id−hθF)−1√hGr , Ā = A−∑m
r=1Cr,r ,

Cr1,r2 = (Id− hθF)−1(0.5h Gr1Gr2 ), h constant step-size, θ controls the implicity of the drift discretisation and
commutative noise.

The second moment of the approximation of (2), that is the expectation of the
discrete matrix-valued process XiX T

i , can be obtained by multiplying (2) with X T
i+1

and (AiXi)
T , respectively. Applying the vectorisation and taking expectation yields

E(Yi+1) = S ·E(Yi) ,

where Yi = vec(XiX T
i ), and S = E(Ai ⊗Ai) is the mean-square stability matrix of the

numerical method

SMar = (A⊗A)+
m

∑
r=1

(Br ⊗Br) ,

SMil = (A⊗A)+
m

∑
r=1

(Br ⊗Br)+2
m

∑
r=1

(Cr,r ⊗Cr,r)+

(

m

∑
r1,r2=1
r1 6=r2

Cr1,r2⊗
m

∑
r1,r2=1
r1 6=r2

Cr1,r2

)

.

Stability condition:
The zero solution of the linear system of stochastic difference equations (2) is
asymptotically stable in mean-square if and only if

ρ(S) < 1.

Here, ρ(S) is the spectral radius defined by ρ(S) = maxi |λi|, where λi are the eigenvalues of the matrix S .

Application to a test-system

Consider the two-dim. test-system with two commutative noise terms:

dX(t) =

(

λ 0
0 λ

)

X(t)dt +

(

σ 0
0 σ

)

X(t)dW1(t)+

(

0 −ε
ε 0

)

X(t)dW2(t) .

Stability conditions: The zero solution of
⊲ this test system is asymptotically mean-square stable if and only if

λ+
σ2

2
+

ε2

2
< 0;

⊲ the stochastic difference equation generated by the θ-Maruyama method is
asymptotically mean-square stable if and only if

(1+(1−θ)hλ)2 +h(σ2 + ε2)

(1−λhθ)2 < 1;

⊲ the stochastic difference equation generated by the θ-Milstein method is
asymptotically mean-square stable if and only if

(1+(1−θ)hλ)2 +h(σ2 + ε2)+ 1
2 h2(σ2 + ε2)2

(1−λhθ)2 < 1.

Stability regions: Set x := hλ, y := hσ2, and z := hε2.

Boundaries of the mean-square stability regions for the test system (black area)
and the θ-Maruyama (light grey area) and the θ-Milstein method (dark grey area)
for θ = 0,0.5,1. The first plot provides a zoom into the second plot.

Numerical experiments

Consider the two-dim. test-system with λ =−2, σ = 0.5, ε =
√

3. The zero-solution
of that system is stable with spectral abscissa −0.750.

θ-Maruyama approximation θ-Milstein approximation
step-size θ = 0 θ = 0.5 θ = 1 θ = 0 θ = 0.5 θ = 1

h=1.00 4.250 unst. 0.813 stable 0.472 stable 9.531 unst. 2.133 unst. 1.059 unst.
h=0.50 1.625 unst. 0.833 stable 0.656 stable 2.945 unst. 1.420 unst. 0.986 stable
h=0.20 1.010 unst. 0.896 stable 0.842 stable 1.221 unst. 1.043 unst. 0.950 stable
h=0.10 0.965 stable 0.938 stable 0.920 stable 1.018 unst. 0.982 stable 0.957 stable
h=0.05 0.973 stable 0.966 stable 0.961 stable 0.986 stable 0.978 stable 0.972 stable
h=0.02 0.987 stable 0.986 stable 0.985 stable 0.989 stable 0.988 stable 0.987 stable
h=0.01 0.993 stable 0.993 stable 0.992 stable 0.993 stable 0.993 stable 0.993 stable

Values of the spectral radius of the corresponding stability matrix SMar and SMil

for the test-equation computed numerically.

Estimated mean-square norm of θ-Maruyama and θ-Milstein approximations.

Results for the first
component X1 using
one million sample
paths, θ = 0 and dif-
ferent values of the
step-sizes.
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